
2740 BRUXNER HIGHWAY, CASINO TRAFFIC IMPACT ASSESSMENT

Gold Coast

Suite 26, 58 Riverwalk Avenue Robina QLD 4226 P: (07) 5562 5377

W: www.bitziosconsulting.com.au

Brisbane

Level 2, 428 Upper Edward Street Spring Hill QLD 4000 P: (07) 3831 4442 E: admin@bitziosconsulting.com.au Sydney

Studio 203, 3 Gladstone Street Newtown NSW 2042 P: (02) 9557 6202

Project No: P3477 Version No: 001 Issue date: 11th May 2018

DOCUMENT CONTROL SHEET

Issue History

Report File Name	Prepared by	Reviewed by	Issued by	Date	Issued to
P3477.001R 2740 Bruxner Highway Casino Traffic Impact Assessment Report	L. Johnston / F. Irony / S. Koskela	A. Bitzios	L. Johnston	11/05/2018	Chris Pickford cpickford@newtondennychapelle.com.au

Copyright in the information and data in this document is the property of Bitzios Consulting. This document and its information and data is for the use of the authorised recipient and this document may not be used, copied or reproduced in whole or in part for any purpose other than for which it was supplied by Bitzios Consulting. Bitzios Consulting makes no representation, undertakes no duty and accepts no responsibility to any third party who may use or rely upon this document or its information and data.

CONTENTS

		Page
1.	INTRODUCTION	1
1.1 1.2	BACKGROUND SCOPE	1 1
2.	Existing Conditions	2
2.1 2.2 2.3 2.4	EXISTING SITE EXISTING ROAD NETWORK BACKGROUND TRAFFIC VOLUMES CRASH DATA	2 2 2 3
3.	PROPOSED DEVELOPMENT	4
4.	TRAFFIC ASSESSMENT	5
4.1 4.2 4.3 4.4	FUTURE GROWTH FORECAST BACKGROUND TRAFFIC VOLUMES TRAFFIC GENERATION TRAFFIC DISTRIBUTION	5 5 5 5
5.	PROPOSED INTERSECTION TREATMENTS	6
5.1 5.2 5.3 5.4 5.4.1 5.4.2 5.4.3 5.4.4 5.4.5 5.4.6 5.4.7 5.4.8	PROPOSED ACCESS ARRANGEMENT DESIGN SPEED LIMIT TURN WARRANTS ASSESSMENT INTERSECTION SPACING ASSESSMENT Methodology Safety Stopping Sight Distance Intersection Sight Distance Functional Area Left-turn Conflict Overlap Influence Distance Egress Capacity Summary	6 6 8 8 8 8 9 10 10 10 10 11
6.	INTERSECTION PERFORMANCE ANALYSIS	12
6.1 6.2 6.3 6.4	OVERVIEW INTERSECTION 1: BRUXNER HIGHWAY / CASSINO DRIVE INTERSECTION 2: BRUXNER HIGHWAY / INDUSTRIAL ACCESS INTERSECTION 3: BRUXNER HIGHWAY / RESIDENTIAL ACCESS	12 12 14 15
7.	SUMMARY AND CONCLUSIONS	16

Tables

Table 2.1: Road Network

Table 2.2: Crash History Data Summary

Table 4.1: Traffic Generation
Table 4.2: Development Trip Splits

Table 5.1: Intersection Spacing Assessment

Table 6.1: Bruxner Highway / Cassino Drive Intersection Results Summary
Table 6.2: Bruxner Highway / Industrial Access Intersection Results Summary
Table 6.3: Bruxner Highway / Residential Access Intersection Results Summary

Figures

Figure 1.1: Subject Site Location

Figure 2.1: Existing Surrounding Speed Zones Figure 2.2: 2018 Background Survey Volumes Figure 5.1: Proposed Intersection Locations

Figure 5.2: Bruxner Highway / Industrial Access 2029 Turn Warrants
Figure 5.3: Bruxner Highway / Residential Access 2029 Turn Warrants
Figure 5.4: Relative Crash Rates for Unsignalised Access Spacing

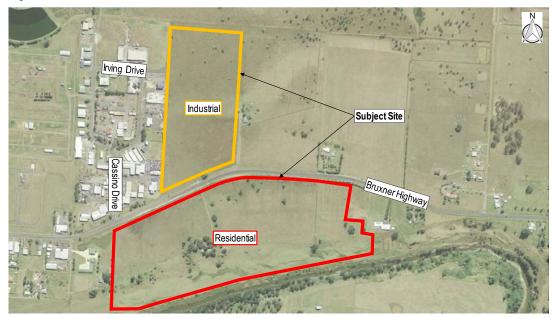
Figure 5.5: Existing Access Spacing
Figure 5.6: Proposed Access Spacing
Figure 6.1: Intersection Analysis Locations

Figure 6.2: Bruxner Highway / Cassino Drive Intersection Configuration
Figure 6.3: Bruxner Highway / Industrial Access Intersection Configuration
Figure 6.4: Bruxner Highway / Residential Access Intersection Configuration

Appendices

Appendix A: Traffic Survey Results
Appendix B: Network Diagrams

Appendix C: Intersection Concept Designs


Appendix D: SIDRA Summaries

1. INTRODUCTION

1.1 BACKGROUND

Bitzios Consulting has been engaged by JM & CA Imeson to prepare a traffic assessment for the proposed residential and industrial rezoning at 2740 Bruxner Highway, Casino. The subject site location is shown in Figure 1.1.

Source: Google Earth - NSW Globe

Figure 1.1: Subject Site Location

1.2 **S**COPE

The scope of works for this assessment will consist of the following:

- a review of the existing road network and traffic conditions in proximity to the site;
- a review of Roads and Maritime Services (RMS) crash data to identify any accident history within 250m of the site access and/or safety issues;
- estimation of development's likely traffic generation and the distribution onto the external road network;
- one (1) SIDRA assessment of the Bruxner Highway / Cassino Drive intersection for year of opening and 10-year design horizon for 'base' and 'development' scenario traffic conditions;
- one (1) SIDRA assessment of the Bruxner Highway / Industrial Access intersections for year of opening and 10-year design horizon for 'base' and 'development' scenario traffic conditions;
- one (1) SIDRA assessment of the Bruxner Highway / Residential Access intersections for year of opening and 10-year design horizon for 'base' and 'development' scenario traffic conditions; and
- a conceptual layout detailing the required geometric form of the Bruxner Highway / Development Access intersections, including lane widths, number of turning lanes, storage lanes etc.

2. EXISTING CONDITIONS

2.1 EXISTING SITE

The subject site exists as a greenfield site on either side (i.e. both north and south) of the Bruxner Highway, approximately 350m east of the Casino town centre.

2.2 EXISTING ROAD NETWORK

Details of the road network surrounding the site is shown in Table 2.1.

Table 2.1: Road Network

Road Name	No. of Lanes	Speed Limit	Divided	Jurisdiction	Hierarchy	Comments
Bruxner Highway	2 (two- way)	100km/h	No	Roads and Maritime Services	Arterial	Primary east-west arterial road connecting Casino to Lismore and Pacific Highway (Ballina). Fronts the subject site.
Cassino Drive	2 (two- way)	50km/h	No	Richmond Valley Council	Local Collector	Intersects with Bruxner Highway to the west. Services a number of industrial land uses adjacent to the subject site.

It is noted that the Bruxner Highway changes from a 100km/h zone to a 50km/h zone in the westbound direction, approximately 190m east of the Bruxner Highway / Cassino Drive intersection. Figure 2.1 shows the existing speed zone change surrounding the subject site.

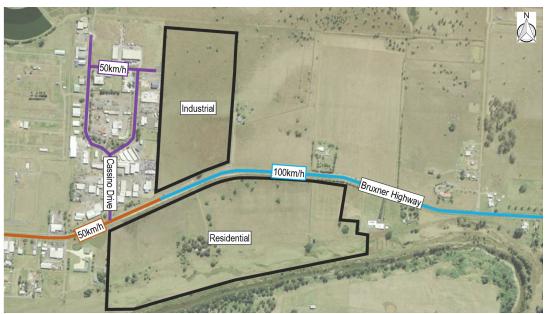


Figure 2.1: Existing Surrounding Speed Zones

2.3 BACKGROUND TRAFFIC VOLUMES

Background traffic volumes for Bruxner Highway / Cassino Drive were obtained from intersection counts undertaken by Traffic Data and Control (TDC) on 31st January 2018. The count data was recorded for both the AM (7:30AM – 8:30AM) and PM (3:45PM – 4:45PM) peak periods and is presented in Figure 2.2.

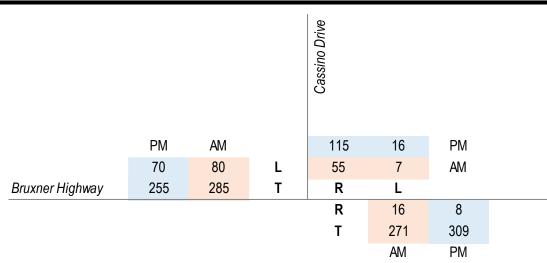


Figure 2.2: 2018 Background Survey Volumes

The survey results for the AM and PM peak period traffic volumes are provided in Appendix A.

2.4 CRASH DATA

Crash data was sourced from RMS for the section of road on the Bruxner Highway and Cassino Drive in the vicinity of the subject site. The crash data included all recorded crashes from 2012 to 2016. The crashes recorded on each approach are summarised in Table 2.2.

Table 2.2: Crash History Data Summary

Crash Date	Location	Key Direction	Туре	Severity
2012	In front of Bruxner Highway / Arthur Street	Eastbound and westbound	Head-on	Fatal
2014	In front of Bruxner Highway / Arthur Street	Eastbound and westbound	Head-on	Serious injury
2016	Intersection of Bruxner Highway/Cassino Drive	T-junction	Rear-end	Moderate injury

Source: RMS

When considering the three (3) crashes that have occurred from 2012 to 2016, two (2) occurred as a headon crash at the bend on Bruxner Highway and one (1) occurred at the Bruxner Highway / Cassino Drive priority-controlled intersection (e.g. vehicles rear-ended while waiting to turn).

3. PROPOSED DEVELOPMENT

The development proposes to rezone the subject site to include an industrial land use to the north of Bruxner Highway, comprising of approximately 144,000m² and a residential land use to the south of Bruxner Highway, which comprises of approximately 186,000m².

At the time of this report, detailed development plans were not available. As such, for the purposes of this report, a first principle approach was used to determine the number of lots at the residential land use and industrial land use developments, as detailed below:

Residential Land Use

- Area: 186,000 m2
- Usable area (70% x Total Area): 130,200m²
- Approximate Lot. Size (based on lot sizes of similar developments nearby): 600m²
- Number of Lots (Usable area/lot size): 217 lots

Industrial Land Use

- Area: 144,000 m²
- Usable area (40% x Total Area): 57,600m²

In the centre of Casino, the percentage of residential lot area over total land area was estimated in the order of 60%. A usable area of 70% was applied for the proposed development in order to undertake a conservative assessment, by modelling increased development traffic. By applying an average lot size of 600m², this yields a total of 217 lots.

At the adjacent industrial area on Cassino Drive, the percentage of gross leasable floor area over total land area was estimated in the order of 25%. Similarly, a gross floor area of 40% was applied for the proposed development in order to undertake a conservative assessment, by modelling increased development traffic.

4. TRAFFIC ASSESSMENT

4.1 FUTURE GROWTH

Specific growth rates for the Bruxner Highway at Casino were not able to be sourced through Council historic or strategic population estimates, profile.id estimates, or RMS permanent count sites. Notwithstanding this, the RMS *Ballina to Tenterfield Corridor Strategy (2009)* states the populations of Lismore and Casino are forecast to increase by 3% per annum over a 25-year period from 2006 to 2031. For this traffic assessment, a compounding growth rate of 1% per annum has been adopted to conservatively estimate an increase in background traffic at the year-of-opening (2019) and 10-year design horizon (2029).

4.2 FORECAST BACKGROUND TRAFFIC VOLUMES

Forecast background traffic volumes for the year of opening (2019) and 10-year post development (2029) for the development intersections are provided in Appendix B.

4.3 TRAFFIC GENERATION

Traffic generation rates for the proposed development were sourced from RMS *Guide to Traffic Generating Developments (2002)* and RMS *Guide to Traffic Generating Developments Technical Note (2013)*. The rates applicable to the proposed development and the resultant traffic generation are shown in Table 4.1.

Table 4.1: Traffic Generation

Land Hea	Quantity	Peak Tr	Peak Trip Generation		
Land Use Quantity		AM	PM	AM	PM
Residential	217 dwellings	0.71 trips/dwelling	0.78 trips/dwelling	154	169
Industrial	57,600m ² GFA	0.32 trips/100m ² GFA	0.39 trips/100m ² GFA	184	225
			Total	338	394

Table 4.2 shows the development IN/OUT splits. For residential land uses it was assumed that 30% of the trips were inbound and 70% of the trips were outbound during the AM peak. The opposite was assumed for the PM peak. For industrial land uses, the land use it is expected that the splits are opposite to the residential land use, as shown below.

Table 4.2: Development Trip Splits

Land Use	Peak Hour Trips (vph)		AM Split (%)		PM Split (%)		AM Peak Trips (vph)		PM Peak Trips (vph)	
	AM	PM	IN	OUT	IN	OUT	IN	OUT	IN	OUT
Residential	154	169	20%	80%	70%	30%	46	108	118	51
Industrial	184	225	70%	30%	30%	70%	129	55	67	157
						Total	175	163	185	208

Table 4.2 shows the development is expected to generate in the order of 175 incoming and 163 outgoing trips during the AM peak, and 185 incoming and 208 outgoing trips during the PM peak.

4.4 TRAFFIC DISTRIBUTION

The development traffic distribution for the development has been based on the traffic survey distributions. These surveys are considered to provide an indication of typical traffic movements in the vicinity of the subject site. The development traffic distribution and design (i.e. background plus development) traffic distributions) for the year of opening (2019) and 10-year post development (2029) are provided in Appendix B.

5. Proposed Intersection Treatments

5.1 PROPOSED ACCESS ARRANGEMENT

Two (2) priority-controlled T-intersections are proposed as part of this development, as shown in Figure 5.1. The two (2) proposed intersections will service each land use separately, to reduce conflicts between residential and industrial traffic (i.e. high proportion of heavy vehicles).

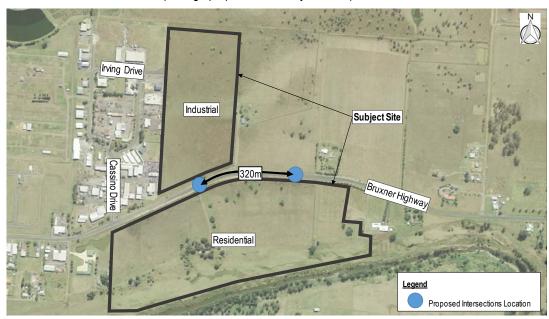


Figure 5.1: Proposed Intersection Locations

5.2 DESIGN SPEED LIMIT

Currently, the posted speed limit along the subject site frontage is 100km/h, with a reduction to 50km/h for westbound traffic (i.e. heading into town) approximately 200m east of the Bruxner Highway / Cassino Drive intersection. The industrial developments which take access from Cassino Drive are located on the current 'edge of town' of Casino. The proposed development would extend the 'edge of town' approximately 800m to the east.

Additionally, as identified in Chapter 2.4, three (3) crashes occurred along the proposed site frontage from 2012 to 2016: two (2) head-on crashes on the Bruxner Highway at the bend; and one (1) rear-end crash at the Bruxner Highway / Cassino Drive intersection. Each of these crashes can be attributed a combination of excessive speed and driver distraction.

Given the above, it is recommended that a speed limit review is undertaken for this section of road. A desirable outcome of this review from a safety perspective would result in the extension of the 50km/h zone to the edge of the proposed developments with an 80km/h speed limit buffer of 300-400m to allow drivers to safely slow from 100km/h to 50km/h as per *Australian Standard* 1742.4.

5.3 TURN WARRANTS ASSESSMENT

A turn warrants assessment was undertaken for the Bruxner Highway / Industrial Access and Bruxner Highway / Residential Access intersection to determine any additional turn lane treatments required. This assessment was undertaken in accordance with Austroads *Guide to Traffic Management Part 6* using 2029 design traffic volumes. The left-turn and right-turn turn warrants assessments for the Bruxner Highway / Industrial Access and Bruxner Highway / Residential Access intersection Figure 5.2 and Figure 5.3 respectively.

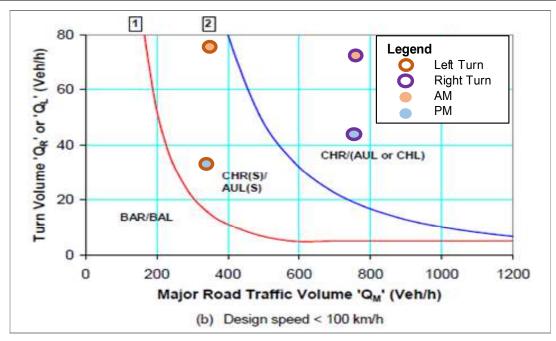


Figure 5.2: Bruxner Highway / Industrial Access 2029 Turn Warrants

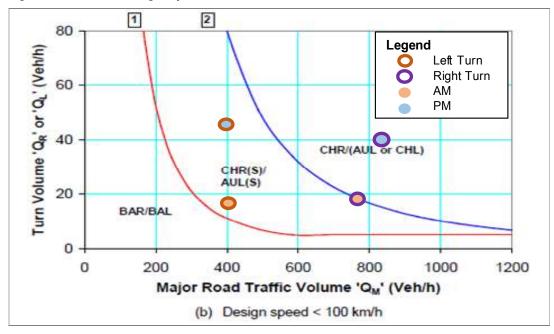


Figure 5.3: Bruxner Highway / Residential Access 2029 Turn Warrants

Figure 5.2 and Figure 5.3 shows that the subject priority-controlled intersections require CHR and AUL turn treatments. The minimum lengths for the CHR and AUL are 55m and 50m respectively in accordance with Austroads guidelines. This accounts for additional design safety, by designing to an 85th percentile vehicular speed of 60km/h for a recommended posted speed limit of 50km/h.

The detailed concept designs of the proposed intersections are provided in Appendix C.

5.4 Intersection Spacing Assessment

5.4.1 Methodology

The spacing of the proposed intersections has been assessed in accordance with the criteria outlined in Appendix A of Austroads *Guide to Road Design Part 4: Intersections and Crossings – General.* The assessment has considered the following criteria:

- safety;
- stopping sight distance;
- intersection sight distance;
- functional area;
- left-turn conflict overlap;
- influence distance; and
- egress capacity.

5.4.2 Safety

Section E.2 of Austroads *Guide to Road Design Part 4: Intersections and Crossing – General* states 'separating conflicts and minimising conflicts is the usual way to improve safety'. Regarding the relationship between crash rates and the frequency of connections along a road, Appendix A of the Guide provides the following as shown in Figure 5.4.

Unsignalised access points per km1	Average spacing ² (m)	Relative crash rate
6	330	1.0
12	165	1.4
18	110	1.8
24	80	2.1
30	66	2.4
36	55	3.0
42	48	3.5

^{1.} Total access connections on both sides of the roadway.

Notes:

Values converted from the original imperial units with minor rounding.

This table is not inconsistent with the findings of Austroads (2000).

Source: TRB (2003).

Source: Austroads Guide to Road Design Part 4: Intersections and Crossing - General

Figure 5.4: Relative Crash Rates for Unsignalised Access Spacing

The area surrounding the proposed development currently presents four (4) unsignalised access points per km, as shown in Figure 5.5.

^{2.} Average spacing between access connections on the same side of the roadway.

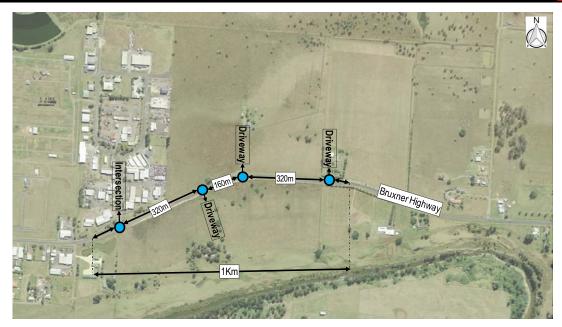


Figure 5.5: Existing Access Spacing

The proposed development will replace the existing southern access and create one (1) new access point off Bruxner Highway, as shown in Figure 5.6.

Figure 5.6: Proposed Access Spacing

The proposed development will increase the number of access points on Bruxner Highway within 1km from four (4) to five (5). This is not expected to increase the relative crash rate as shown in Figure 5.4, and as such, the nominated locations of the proposed intersections achieve the safety requirements.

5.4.3 Stopping Sight Distance

Section E.3 of Austroads *Guide to Road Design Part 4: Intersections and Crossings – General* states "desirably, a driver can clear the intersection or access connection and have at least stopping sight distance available to react to a potential conflict and come to a stop".

Thus, a downstream access connection should not be less than the approach sight distance from the downstream side of the previous connection or intersection'. Table 3.1 of Austroads *Guide to Road Design Part 4A: Unsignalised and Signalised Intersections* prescribes an approach sight distance of:

- 73m for a 60km/h design speed (i.e. posted speed + 10km/h);
- 92m for a 70km/h design speed;
- 114 for an 80km/h design speed; and
- 165 for a 100km/h design speed;

The nominated locations of the proposed intersections achieve this requirement for up to an **80km/h** design speed.

5.4.4 Intersection Sight Distance

Section E.4 of Austroads *Guide to Road Design Part 4: Intersections and Crossings – General* states 'this sight distance is required to allow a driver to enter or cross a major roadway'. Table 3.2 of Austroads *Guide to Road Design Part 4A: Unsignalised and Signalised Intersections* prescribes a sight distance of:

- 123m for a 60km/h design speed;
- 151m for a 70km/h design speed;
- 181m for an 80km/h design speed; and
- 248m for a 100km/h design speed.

The nominated locations of the proposed intersections achieve this requirement for up to a **70km/h** design speed.

5.4.5 Functional Area

Section E.5 of Austroads *Guide to Road Design Part 4: Intersections and Crossings – General* states 'the functional area of an intersection is the area beyond the physical intersection of two facilities that comprises decision and manoeuvre distance, plus any required vehicle storage length, and can be protected through corner clearance standards and connection spacing standards'. Table E 2 of Austroads *Guide to Road Design Part 4: Intersections and Crossings – General* provides an upstream functional intersection distance of:

- 155m for a 60km/h design speed; and
- 215m for an 80km/h design speed.

The nominated locations of the proposed intersections achieve this requirement for up to a **60km/h** design speed.

5.4.6 Left-turn Conflict Overlap

Section E.6 of Austroads *Guide to Road Design Part 4: Intersections and Crossings – General* states 'an overlap occurs when the through driver must monitor more than one access at a time'. Table E 3 of Austroads *Guide to Road Design Part 4: Intersections and Crossings – General* provides a minimum spacing of:

- 80m for a 60km/h design speed; and
- 105m for an 70km/h design speed.

The nominated locations of the proposed intersections achieve this requirement for up to a **70km/h** design speed.

5.4.7 Influence Distance

Section E.7 of Austroads *Guide to Road Design Part 4: Intersections and Crossings – General* states 'the influence distance of a driveway (or minor access street) is defined as the sum of the impact distance (comparable to the manoeuvre distance in section E.5) plus the perception/reaction distance'. Table E 5 of Austroads *Guide to Road Design Part 4: Intersections and Crossings – General* provides a driveway influence distance for a 2% (least-case) spill-back rate of:

- 130m for a 60km/h design speed;
- 155m for a 70km/h design speed; and

190m for an 80km/h design speed.

The nominated locations of the proposed intersections achieve this requirement for up to a **70km/h** design speed.

5.4.8 Egress Capacity

Section E.8 of Austroads *Guide to Road Design Part 4: Intersections and Crossings – General* states 'egress capacity refers to the ability of vehicles to exit from an access into the traffic stream'. Table E 6 of Austroads *Guide to Road Design Part 4: Intersections and Crossings – General* provides a distance value to maximise the ability of cars to re-enter the through traffic stream from an unsignalised driveway of:

- 170m for a 60km/h design speed;
- 240m for a 70km/h design speed; and
- 300m for an 80km/h design speed.

The nominated locations of the proposed intersections are deemed to comply with this requirement for a **60km/h** design speed.

5.4.9 Summary

Table 5.1 demonstrates that a **60km/h** design speed (i.e. 50km/h posted speed + 10km/h) complies with Austroads *Guide to Road Design Part 4: Intersections and Crossings – General* considering the Intersection Spacing Assessment for Bruxner Highway surrounding the proposed development.

Table 5.1: Intersection Spacing Assessment

Internation Consider Assessment	Design Speed						
Intersection Spacing Assessment	60km/h	70km/h	80km/h	100km/h			
Safety	Compliant	Compliant	Compliant	Compliant			
Stopping Sight Distance	Compliant	Compliant	Compliant	Non-Compliant			
Intersection Sight Distance	Compliant	Compliant	Non-Compliant	Non-Compliant			
Left-turn Conflict Overlap	Compliant	Compliant	Non-Compliant	Non-Compliant			
Influence Distance	Compliant	Compliant	Non-Compliant	Non-Compliant			
Functional Area	Compliant	Non-Compliant	Non-Compliant	Non-Compliant			
Egress Capacity	Compliant	Non-Compliant	Non-Compliant	Non-Compliant			

It is important to note that Section A.10 of Austroads *Guide to Road Design Part 4: Intersections and Crossings – General* states 'roads with speeds greater than 70km/h are usually more critical than roads with speeds less than 70km/h'.

It is recommended that the 50km/h posted speed limit on the Bruxner Highway is extended past the development to ensure compliance with the codes and standards above.

6. Intersection Performance Analysis

6.1 **OVERVIEW**

The key intersections of Bruxner Highway / Cassino Drive, Bruxner Highway / Industrial Access and Bruxner Highway / Residential Access were assessed using SIDRA intersection V7.0. The year-of-opening (2019) and 10-year design horizon (2029) was analysed for "Background" and "Design" traffic scenario. The locations of the analysed intersection are provided in Figure 6.1.

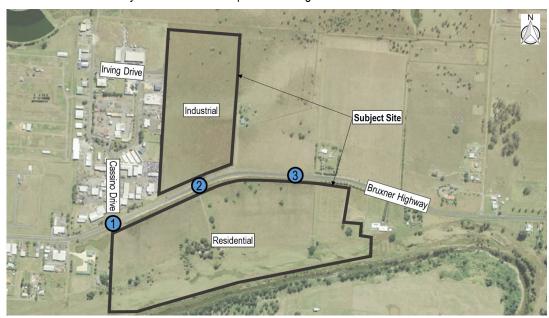


Figure 6.1: Intersection Analysis Locations

6.2 Intersection 1: Bruxner Highway / Cassino Drive

The configuration of the Bruxner Highway / Cassino Drive priority-controlled intersection is shown in Figure 6.2.

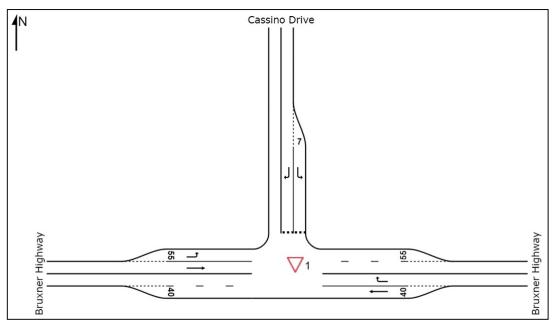


Figure 6.2: Bruxner Highway / Cassino Drive Intersection Configuration

The SIDRA assessment results for the Bruxner Highway / Cassino Drive for 2019 and 2029 AM and PM peak periods for "background" (without development) and "design" (with development) scenarios are provided in Table 6.1.

Table 6.1: Bruxner Highway / Cassino Drive Intersection Results Summary

		Ye	ear-Of-Openi	ng	10-Ye	10-Year Design Horizon			
Approach	Movement	Saturation (v/c)	Delay (s)	95%ile Queues (m)	Saturation (v/c)	Delay (s)	95%ile Queues (m)		
	•	AM	Peak Hour Ba	ackground Traff	ïc				
Bruxner	Through	0.16	0	0	0.17	0	0		
Highway (E)	Right	0.02	8	1	0.02	8	1		
Cassino Drive	Left	0.01	6	0	0.01	6	0		
(N)	Right	0.18	13	5	0.20	14	6		
Bruxner	Left	0.06	6	0	0.06	6	0		
Highway (W)	Through	0.17	0	0	0.18	0	0		
		Α	M Peak Hour	Design Traffic					
Bruxner	Through	0.19	0	0	0.20	0	0		
Highway (E)	Right	0.03	9	1	0.03	9	1		
Cassino Drive	Left	0.01	7	0	0.01	7	0		
(N)	Right	0.24	17	7	0.27	20	8		
Bruxner	Left	0.06	6	0	0.06	6	0		
Highway (W)	Through	0.22	0	0	0.23	0	0		
		PM	Peak Hour Ba	ackground Traff	ic				
Bruxner	Through	0.18	0	0	0.20	0	0		
Highway (E)	Right	0.01	7	0	0.01	8	0		
Cassino Drive	Left	0.02	6	1	0.02	6	1		
(N)	Right	0.37	15	13	0.41	17	15		
Bruxner	Left	0.05	6	0	0.05	6	0		
Highway (W)	Through	0.15	0	0	0.16	0	0		
		P	M Peak Hour	Design Traffic					
Bruxner	Through	0.19	0	0	0.21	0	0		
Highway (E)	Right	0.01	8	0	0.02	8	0		
Cassino Drive	Left	0.03	7	1	0.03	7	1		
(N)	Right	0.47	20	17	0.52	24	20		
Bruxner	Left	0.05	6	0	0.05	6	0		
Highway (W)	Through	0.20	0	0	0.21	0	0		

The SIDRA results presented in Table 6.1 indicate that Bruxner Highway / Cassino Drive intersection is expected to operate within the acceptable thresholds for the year-of-opening (2019) and 10-year horizon (2029) irrespective of the proposed developed. Detailed SIDRA Results are provided in Appendix D.

6.3 Intersection 2: Bruxner Highway / Industrial Access

The configuration of the Bruxner Highway / Industrial Access priority-controlled intersection is shown in Figure 6.3.

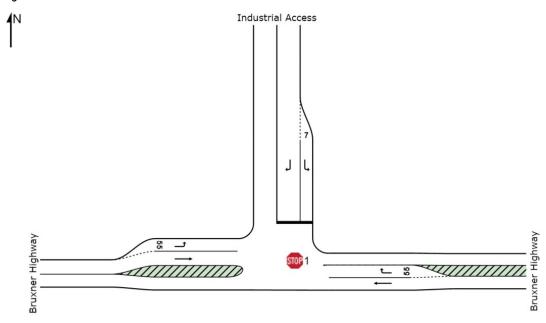


Figure 6.3: Bruxner Highway / Industrial Access Intersection Configuration

The SIDRA assessment results for the Bruxner Highway / Industrial Access for 2019 and 2029 AM and PM peak periods for "design" (with development) scenarios are provided in Table 6.2.

Table 6.2: Bruxner Highway / Industrial Access Intersection Results Summary

		Ye	ear-Of-Openi	ng	10-Yea	ar Design Ho	orizon
Approach	Movement	Saturation (v/c)	Delay (s)	95%ile Queues (m)	Saturation (v/c)	Delay (s)	95%ile Queues (m)
		AN	Л Peak Hour I	Design Traffic			
Bruxner	Through	0.20	0	0	0.21	0	0
Highway (E)	Right	0.07	8	2	0.08	8	2
Industrial	Left	0.04	10	1	0.04	10	1
Access (N)	Right	0.11	22	3	0.13	24	3
Bruxner	Left	0.04	6	0	0.04	6	0
Highway (W)	Through	0.18	0	0	0.19	0	0
		PN	Л Peak Hour I	Design Traffic			
Bruxner	Through	0.20	0	0	0.22	0	0
Highway (E)	Right	0.04	8	1	0.04	8	1
Industrial	Left	0.10	10	3	0.10	11	3
Access (N)	Right	0.33	24	10	0.38	28	12
Bruxner	Left	0.02	6	0	0.02	6	0
Highway (W)	Through	0.19	0	0	0.20	0	0

The SIDRA results presented in Table 6.2 indicate that Bruxner Highway / Industrial Access intersection is expected to operate within the acceptable thresholds for the year-of-opening (2019) and 10-year horizon (2029) irrespective of the proposed developed. Detailed SIDRA Results are provided in Appendix D.

6.4 Intersection 3: Bruxner Highway / Residential Access

The configuration of the Bruxner Highway / Residential Access priority-controlled intersection is shown in Figure 6.4.

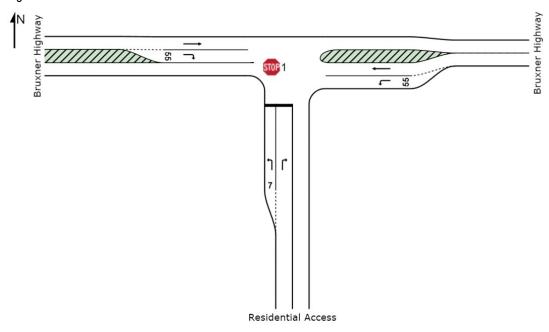


Figure 6.4: Bruxner Highway / Residential Access Intersection Configuration

The SIDRA assessment results for the Bruxner Highway / Industrial Access for 2019 and 2029 AM and PM peak periods for "design" (with development) scenarios are provided in Table 6.3.

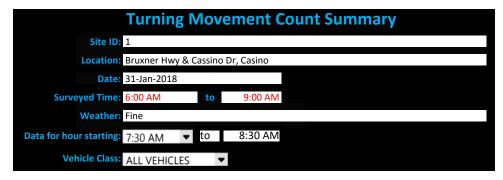
Table 6.3: Bruxner Highway / Residential Access Intersection Results Summary

		Ye	ear-Of-Openi	ng	10-Year Design Horizon			
Approach	Movement	Saturation (v/c)	Delay (s)	95%ile Queues (m)	Saturation (v/c)	Delay (s)	95%ile Queues (m)	
		AΛ	Л Peak Hour I	Design Traffic				
Residential	Left	0.07	10	2	0.08	10	2	
Access (S)	Right	0.19	19	5	0.22	21	6	
Bruxner	Left	0.01	6	0	0.01	6	0	
Highway (E)	Through	0.20	0	0	0.22	0	0	
Bruxner	Through	0.18	0	0	0.20	0	0	
Highway (W)	Right	0.03	7	1	0.03	8	1	
		PN	Л Peak Hour I	Design Traffic				
Residential	Left	0.04	10	1	0.04	10	1	
Access (S)	Right	0.10	20	2	0.11	23	3	
Bruxner	Left	0.04	6	0	0.04	6	0	
Highway (E)	Through	0.20	0	0	0.22	0	0	
Bruxner	Through	0.20	0	0	0.21	0	0	
Highway (W)	Right	0.07	8	2	0.07	8	2	

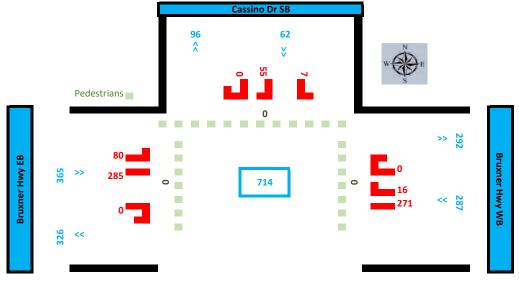
The SIDRA results presented in Table 6.3 indicate that Bruxner Highway / Residential Access intersection is expected to operate within the acceptable thresholds for the year-of-opening (2019) and 10-year horizon (2029) irrespective of the proposed developed. Detailed SIDRA Results are provided in Appendix D.

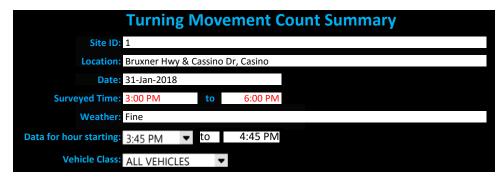
7. SUMMARY AND CONCLUSIONS

The key findings of the Traffic Impact Assessment for the proposed development located at Bruxner Highway, Casino are as follows:

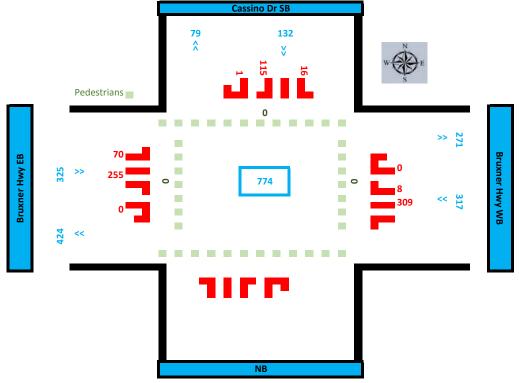

- the proposal is for residential and industrial rezoning at 2740 Bruxner Highway, Casino;
- based on a first principle approach the proposed development is expected to consist of 155 residential lots and 72,000m² of usable industrial land use;
- the development is expected to generate 194 incoming and 148 outgoing trips during the AM peak, and 169 incoming and 233 outgoing trips during the PM peak;
- it is recommended that the 50km/h zone that currently exist approximately 200m east of the Bruxner Highway / Cassino Drive intersection is extended approximately 200m east from the proposed Bruxner Highway / Residential Land Use Access intersection. The exact location of speed zones and buffers are to be confirmed by a speed limit review;
- the proposed intersection spacing complies with Appendix A of Austroads Guide to Road Design Part
 Intersections and Crossings General for a 60km/h design speed and a 50km/h posted speed;
- turn warrants assessment determined the subject priority-controlled intersections requires a CHR and AUL turn treatments for the industrial and residential areas; and
- the SIDRA results indicate the Bruxner Highway / Cassino Drive, Bruxner Highway / Industrial Access and Bruxner Highway / Residential Access intersections are expected to operate within acceptable thresholds for the year-of-opening (2019) and 10-year horizon (2029) under both background and design traffic scenarios.

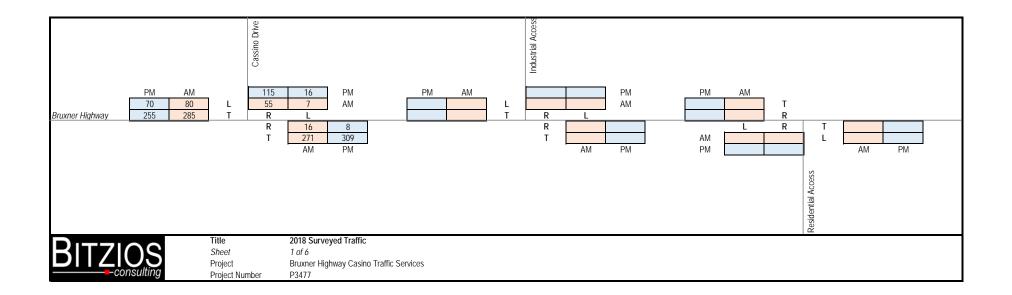
Based on the above assessment, and on the basis of extending the 50km/h speed zone, it is concluded that there are no significant traffic or transport impacts associated with the proposed development to preclude its approval and relevant conditioning on transport planning grounds.

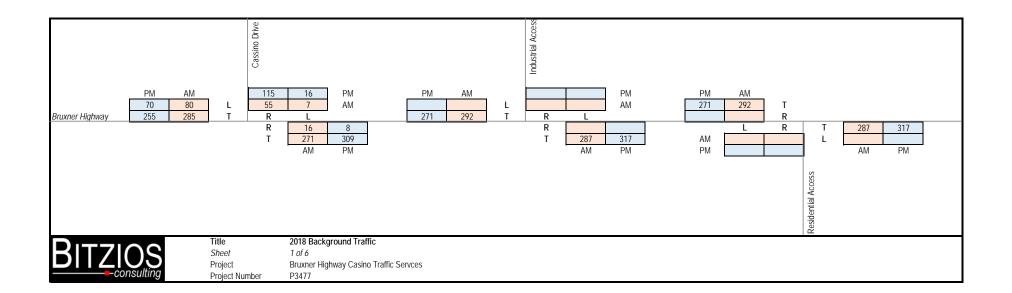


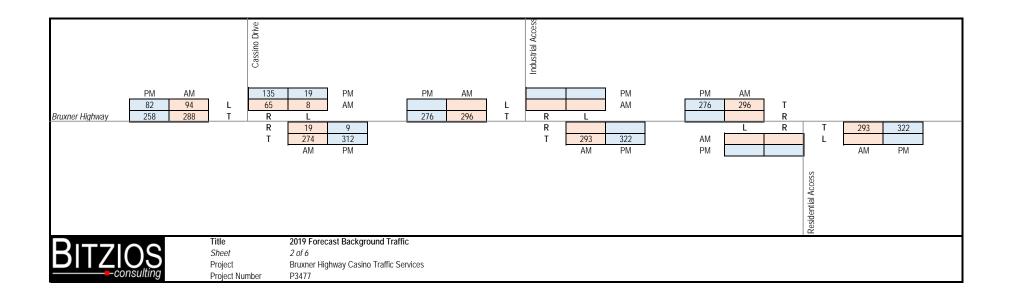

APPENDIX A

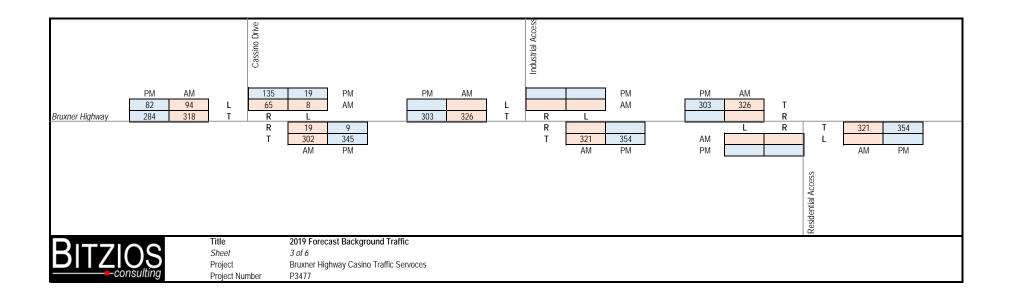
TRAFFIC SURVEY RESULTS

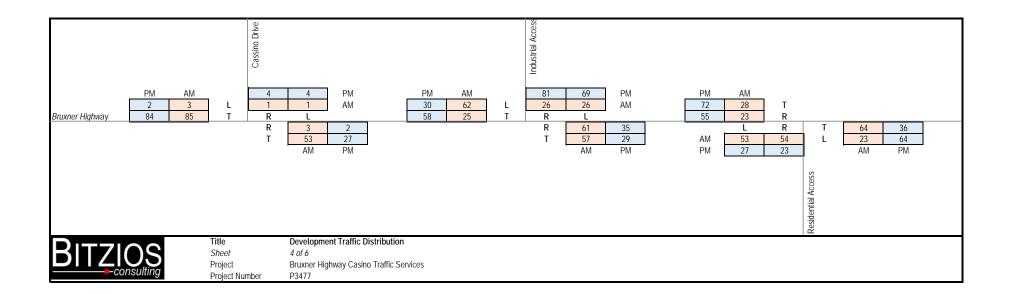


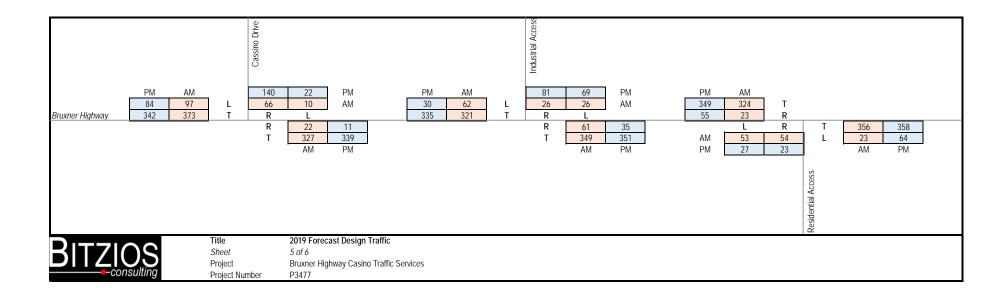


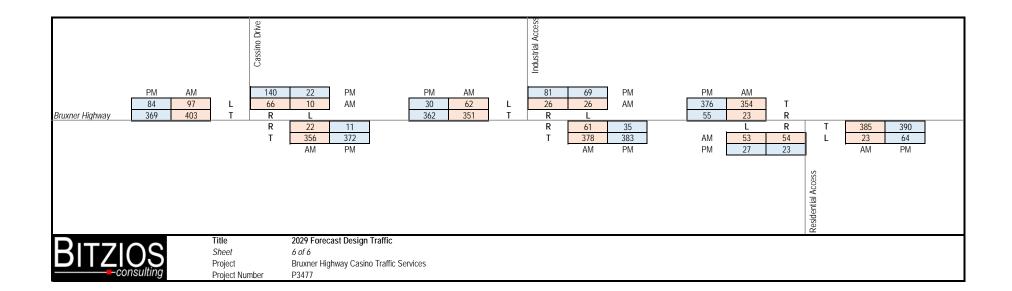


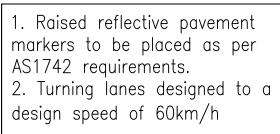


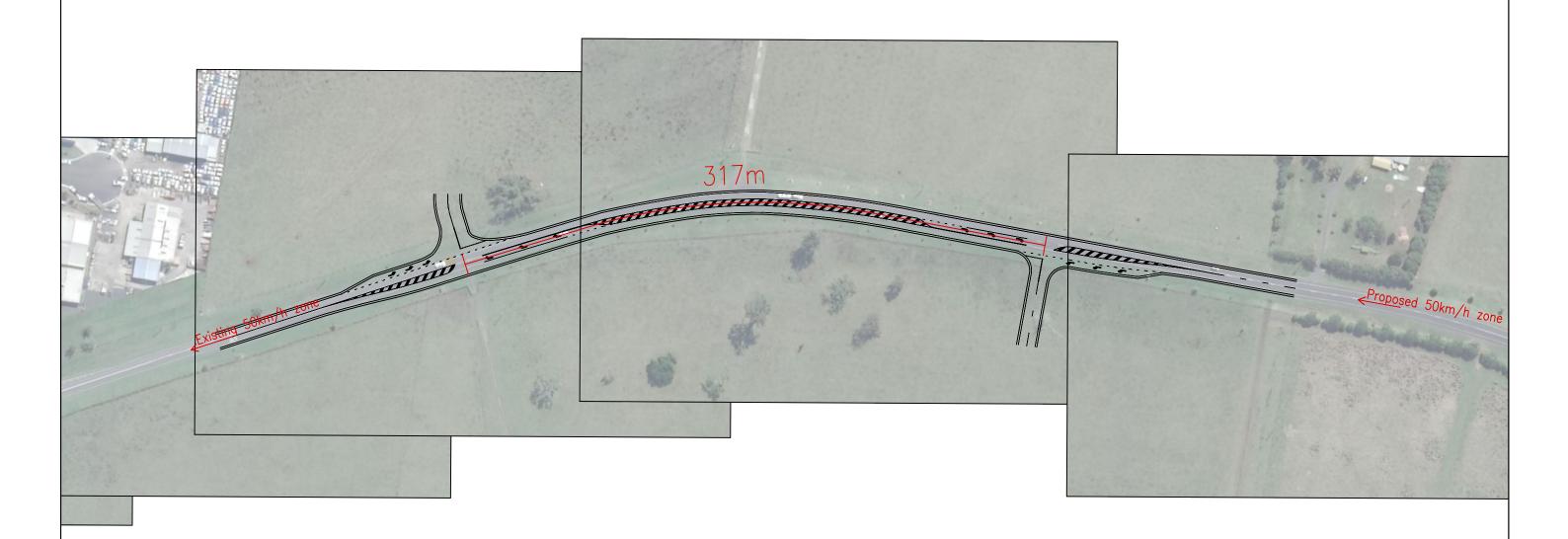

APPENDIX B


NETWORK DIAGRAMS



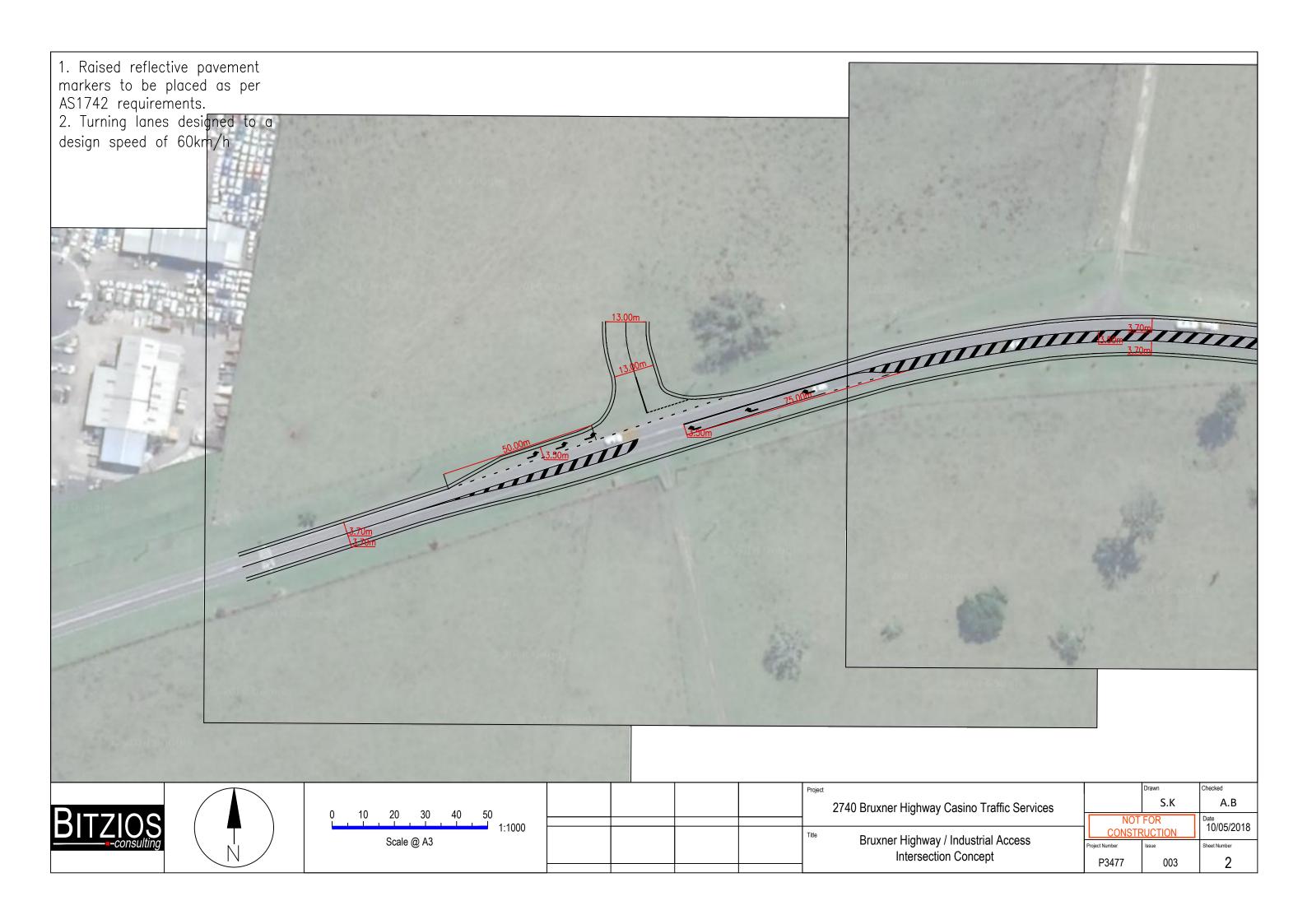


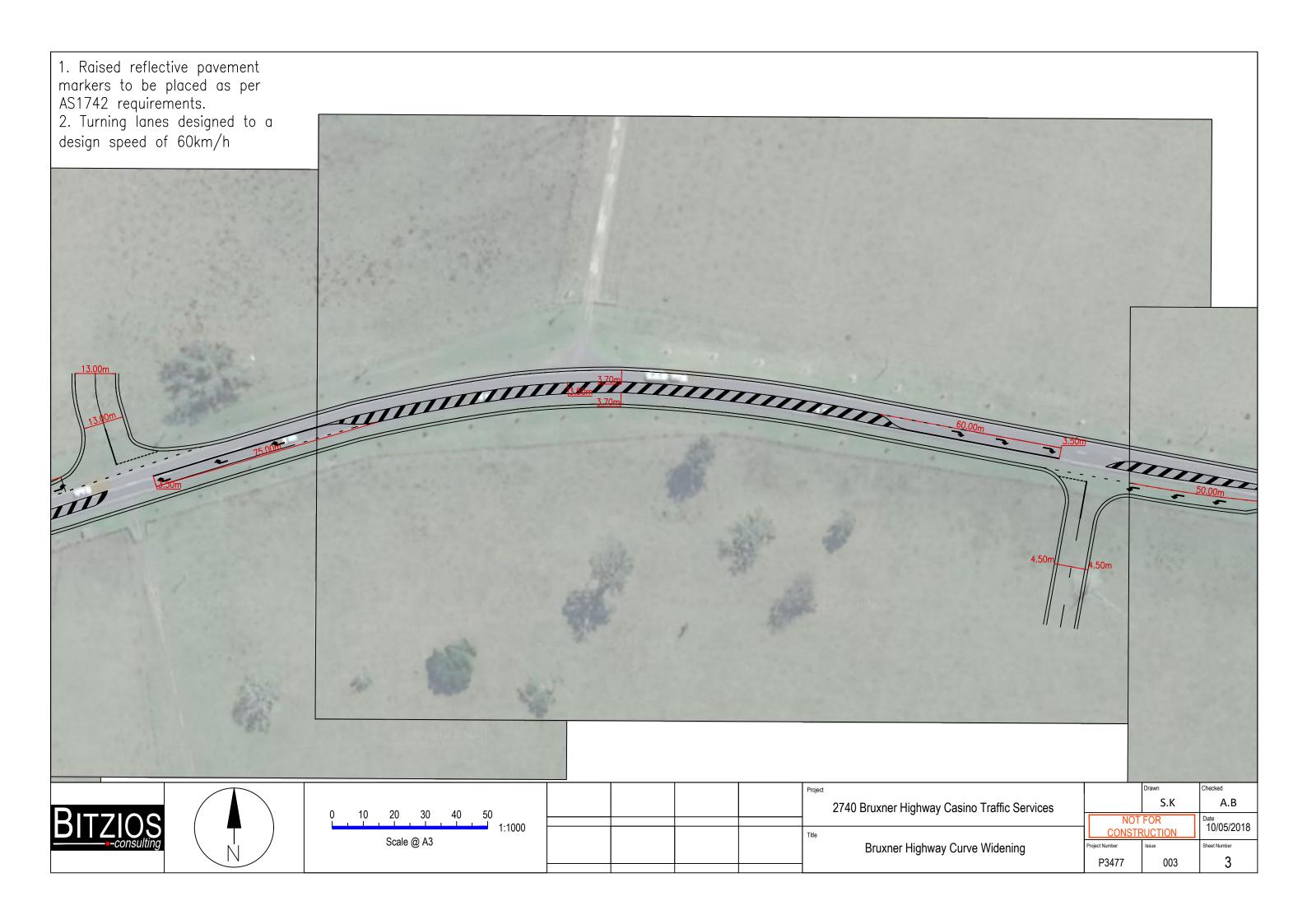


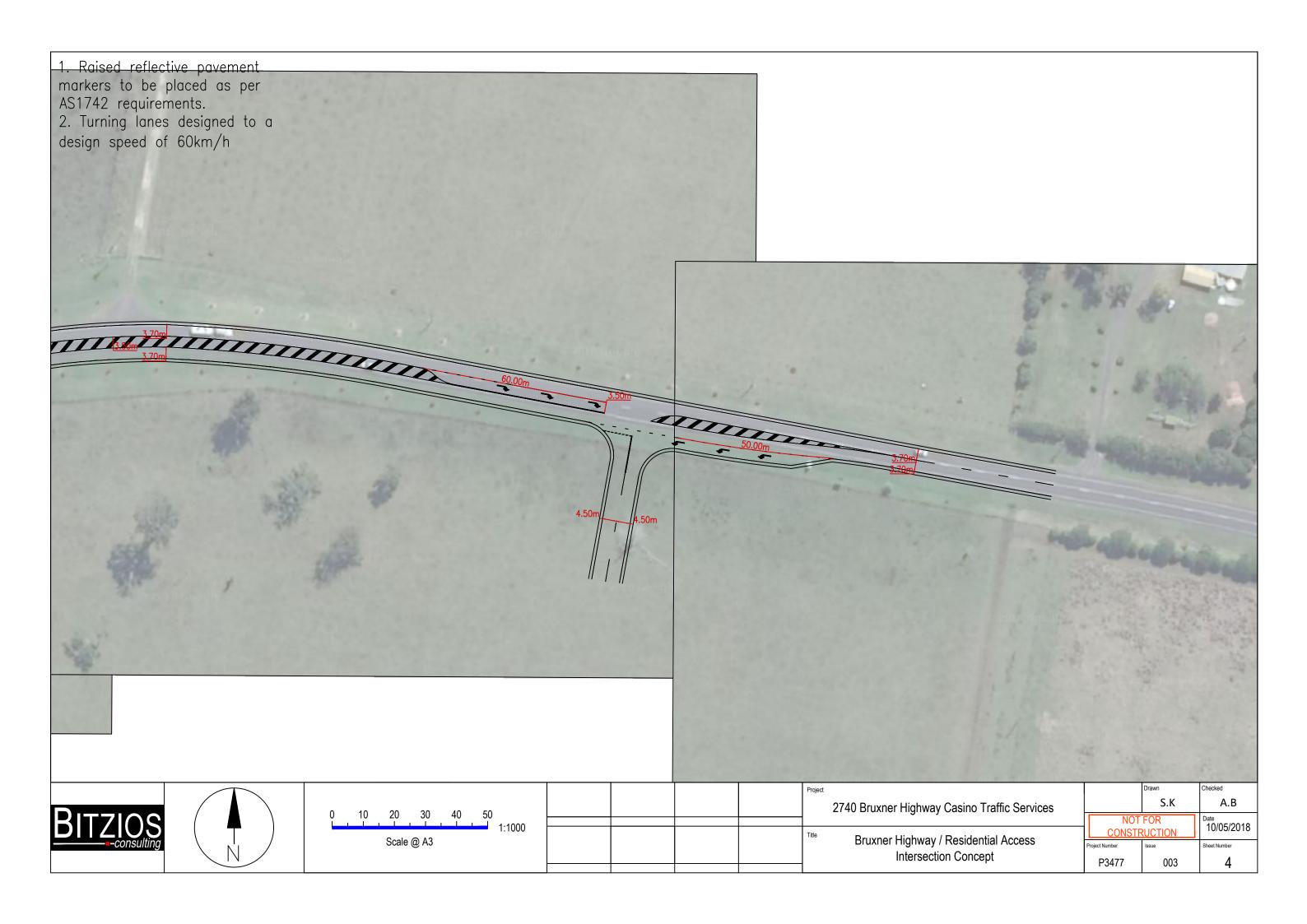


APPENDIX C

INTERSECTION CONCEPT DESIGNS

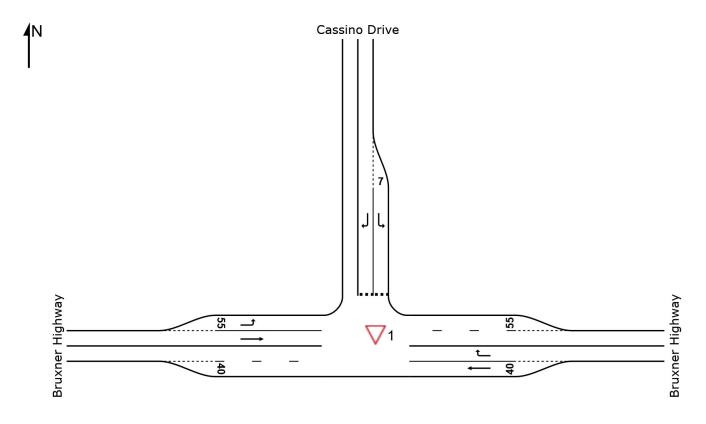



0	20 	40 	60 L	80 L	100	1:2000
		Scale	@ A3			1.2000


		2740 Bruxner Highway Casino Traffic Services	NO
		Bruxner Highway / Development Accesses Intersection Concepts	Project Number
			P3477

S.K

A.B Date 10/05/2018


APPENDIX **D**

SIDRA SUMMARIES

SITE LAYOUT

▽ Site: 1 [2019 BG AM - Existing]

Bruxner Highway / Cassino Drive Priority-Controlled Intersection 2019 Background Traffic AM Peak Hour Giveway / Yield (Two-Way)

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: BITZIOS CONSULTING | Created: Friday, 11 May 2018 2:59:24 PM
Project: P:\P3477 2740 Bruxner Hway Casino Traffic Services\Technical Work\Models\SIDRA\P3477.001M Bruxner Cassino Existing.sip7

▽ Site: 1 [2019 BG AM - Existing]

Bruxner Highway / Cassino Drive Priority-Controlled Intersection 2019 Background Traffic AM Peak Hour Giveway / Yield (Two-Way)

Move	ment Pe	rformance ·	- Vehicle	es							
Mov ID	OD Mov	Demand Total	Flows HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec	2011100	veh	m	Quoucu	per veh	km/h
East: E	Bruxner H	ighway									
5	T1	288	9.0	0.157	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
6	R2	20	10.0	0.023	7.7	LOS A	0.1	0.7	0.45	0.63	48.4
Appro	ach	308	9.1	0.157	0.5	NA	0.1	0.7	0.03	0.04	59.1
North:	Cassino I	Drive									
7	L2	8	10.0	0.009	6.1	LOS A	0.0	0.2	0.37	0.55	48.5
9	R2	68	10.0	0.178	12.8	LOS B	0.7	4.9	0.67	0.85	44.4
Appro	ach	77	10.0	0.178	12.0	LOS B	0.7	4.9	0.64	0.82	44.8
West:	Bruxner H	lighway									
10	L2	99	10.0	0.057	5.7	LOS A	0.0	0.0	0.00	0.57	53.2
11	T1	303	9.0	0.165	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Appro	ach	402	9.2	0.165	1.4	NA	0.0	0.0	0.00	0.14	58.1
All Vel	nicles	787	9.2	0.178	2.1	NA	0.7	4.9	0.07	0.17	56.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Processed: Wednesday, 4 April 2018 10:30:41 AM
Project: P:\P3477 2740 Bruxner Hway Casino Traffic Services\Technical Work\Models\SIDRA\P3477.001M Bruxner Cassino Existing.sip7

▽ Site: 1 [2019 BG PM - Existing]

Bruxner Highway / Cassino Drive Priority-Controlled Intersection 2019 Background Traffic PM Peak Hour Giveway / Yield (Two-Way)

Move	ment Per	formance ·	- Vehicle	es							
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Foot: I	Bruxner Hi	veh/h	%	v/c	sec		veh	m		per veh	km/h
		,									
5	T1	328	9.0	0.178	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
6	R2	9	10.0	0.010	7.4	LOS A	0.0	0.3	0.42	0.59	48.6
Appro	ach	338	9.0	0.178	0.2	NA	0.0	0.3	0.01	0.02	59.6
North:	Cassino D	Orive									
7	L2	20	10.0	0.021	5.9	LOS A	0.1	0.6	0.35	0.56	48.5
9	R2	142	10.0	0.366	15.0	LOS C	1.7	12.9	0.73	0.95	43.2
Appro	ach	162	10.0	0.366	13.9	LOS B	1.7	12.9	0.68	0.90	43.8
West:	Bruxner H	ighway									
10	L2	86	10.0	0.050	5.7	LOS A	0.0	0.0	0.00	0.57	53.2
11	T1	272	9.0	0.147	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Appro	ach	358	9.2	0.147	1.4	NA	0.0	0.0	0.00	0.14	58.2
All Vel	hicles	858	9.3	0.366	3.3	NA	1.7	12.9	0.13	0.23	55.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Processed: Wednesday, 4 April 2018 10:33:26 AM
Project: P:\P3477 2740 Bruxner Hway Casino Traffic Services\Technical Work\Models\SIDRA\P3477.001M Bruxner Cassino Existing.sip7

Site: 1 [2019 DES AM - Existing]

Bruxner Highway / Cassino Drive Priority-Controlled Intersection 2019 Design Traffic AM Peak Hour Giveway / Yield (Two-Way)

Move	ment Per	formance ·	- Vehicle	es							
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Fact:	Bruxner Hi	veh/h	%	v/c	sec		veh	m		per veh	km/h
		,									
5	T1	344	9.0	0.187	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
6	R2	23	10.0	0.030	8.4	LOS A	0.1	0.9	0.51	0.68	48.0
Appro	ach	367	9.1	0.187	0.6	NA	0.1	0.9	0.03	0.04	59.0
North:	Cassino D	Prive									
7	L2	11	10.0	0.013	6.7	LOS A	0.0	0.3	0.43	0.59	48.1
9	R2	69	10.0	0.239	17.3	LOS C	0.9	6.8	0.77	0.92	42.0
Appro	ach	80	10.0	0.239	15.9	LOS C	0.9	6.8	0.73	0.88	42.8
West:	Bruxner H	ighway									
10	L2	102	10.0	0.059	5.7	LOS A	0.0	0.0	0.00	0.57	53.2
11	T1	393	9.0	0.213	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Appro	ach	495	9.2	0.213	1.2	NA	0.0	0.0	0.00	0.12	58.4
All Ve	hicles	942	9.2	0.239	2.2	NA	0.9	6.8	0.07	0.15	56.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Processed: Tuesday, 8 May 2018 1:14:48 PM
Project: P:\P3477 2740 Bruxner Hway Casino Traffic Services\Technical Work\Models\SIDRA\P3477.001M Bruxner Cassino Existing.sip7

▽ Site: 1 [2019 DES PM - Existing]

Bruxner Highway / Cassino Drive Priority-Controlled Intersection 2019 Design Traffic PM Peak Hour Giveway / Yield (Two-Way)

Move	ment Pe	erformance	- Vehicle	es							
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/h
East: I	Bruxner H		70	V/ O	300		7511			per veri	1(11)/11
5	T1	357	9.0	0.194	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
6	R2	12	10.0	0.014	8.0	LOS A	0.1	0.4	0.48	0.63	48.2
Appro	ach	368	9.0	0.194	0.3	NA	0.1	0.4	0.02	0.02	59.5
North:	Cassino	Drive									
7	L2	23	10.0	0.027	6.5	LOS A	0.1	0.7	0.41	0.60	48.2
9	R2	147	10.0	0.468	20.0	LOS C	2.3	17.3	0.81	1.04	40.8
Appro	ach	171	10.0	0.468	18.1	LOS C	2.3	17.3	0.76	0.98	41.7
West:	Bruxner I	Highway									
10	L2	88	10.0	0.051	5.7	LOS A	0.0	0.0	0.00	0.57	53.2
11	T1	360	9.0	0.195	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Appro	ach	448	9.2	0.195	1.1	NA	0.0	0.0	0.00	0.11	58.5
All Vel	nicles	987	9.3	0.468	3.7	NA	2.3	17.3	0.14	0.23	55.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Processed: Tuesday, 8 May 2018 1:15:18 PM
Project: P:\P3477 2740 Bruxner Hway Casino Traffic Services\Technical Work\Models\SIDRA\P3477.001M Bruxner Cassino Existing.sip7

▽ Site: 1 [2029 BG AM - Existing]

Bruxner Highway / Cassino Drive Priority-Controlled Intersection 2029 Background Traffic AM Peak Hour Giveway / Yield (Two-Way)

Move	ment Pe	rformance ·	· Vehicle	es							
Mov ID	OD Mov	Demand Total	Flows HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
Fast: F	Bruxner H	veh/h ighway	%	v/c	sec		veh	m		per veh	km/h
5	T1	318	9.0	0.173	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
6	R2	20	10.0	0.024	7.9	LOSA	0.1	0.7	0.47	0.64	48.3
Appro		338	9.1	0.024	0.5	NA	0.1	0.7	0.47	0.04	59.1
			3.1	0.173	0.0	INA	0.1	0.7	0.03	0.04	33.1
North:	Cassino I	Drive									
7	L2	8	10.0	0.010	6.3	LOS A	0.0	0.2	0.39	0.56	48.4
9	R2	68	10.0	0.198	14.3	LOS B	0.7	5.5	0.71	0.87	43.6
Appro	ach	77	10.0	0.198	13.4	LOS B	0.7	5.5	0.68	0.84	44.1
West:	Bruxner H	lighway									
10	L2	99	10.0	0.057	5.7	LOS A	0.0	0.0	0.00	0.57	53.2
11	T1	335	9.0	0.182	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Appro	ach	434	9.2	0.182	1.3	NA	0.0	0.0	0.00	0.13	58.3
All Vel	nicles	848	9.2	0.198	2.1	NA	0.7	5.5	0.07	0.16	56.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Processed: Wednesday, 4 April 2018 10:38:02 AM
Project: P:\P3477 2740 Bruxner Hway Casino Traffic Services\Technical Work\Models\SIDRA\P3477.001M Bruxner Cassino Existing.sip7

▽ Site: 1 [2029 BG PM - Existing]

Bruxner Highway / Cassino Drive Priority-Controlled Intersection 2029 Background Traffic PM Peak Hour Giveway / Yield (Two-Way)

Move	ment Per	rformance ·	- Vehicle	es							
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Foot: I	Druvnor Hi	veh/h	%	v/c	sec		veh	m		per veh	km/h
	Bruxner Hi										
5	T1	363	9.0	0.197	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
6	R2	9	10.0	0.011	7.5	LOS A	0.0	0.3	0.44	0.60	48.5
Appro	ach	373	9.0	0.197	0.2	NA	0.0	0.3	0.01	0.02	59.6
North:	Cassino D	Orive									
7	L2	20	10.0	0.022	6.1	LOS A	0.1	0.6	0.37	0.57	48.5
9	R2	142	10.0	0.410	17.3	LOS C	1.9	14.7	0.77	0.99	42.0
Appro	ach	162	10.0	0.410	15.9	LOS C	1.9	14.7	0.72	0.94	42.7
West:	Bruxner H	ighway									
10	L2	86	10.0	0.050	5.7	LOS A	0.0	0.0	0.00	0.57	53.2
11	T1	299	9.0	0.162	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Appro	ach	385	9.2	0.162	1.3	NA	0.0	0.0	0.00	0.13	58.3
All Vel	hicles	920	9.3	0.410	3.4	NA	1.9	14.7	0.13	0.23	55.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Processed: Wednesday, 4 April 2018 10:41:00 AM
Project: P:\P3477 2740 Bruxner Hway Casino Traffic Services\Technical Work\Models\SIDRA\P3477.001M Bruxner Cassino Existing.sip7

V Site: 1 [2029 DES AM - Existing]

Bruxner Highway / Cassino Drive Priority-Controlled Intersection 2029 Design Traffic AM Peak Hour Giveway / Yield (Two-Way)

Move	ment Pe	rformance	- Vehicle	es							
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/h
East: I	Bruxner H	ighway									
5	T1	375	9.0	0.203	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
6	R2	23	10.0	0.032	8.7	LOS A	0.1	0.9	0.52	0.69	47.8
Appro	ach	398	9.1	0.203	0.5	NA	0.1	0.9	0.03	0.04	59.1
North:	Cassino I	Drive									
7	L2	11	10.0	0.014	6.9	LOS A	0.0	0.3	0.45	0.61	48.0
9	R2	69	10.0	0.270	19.8	LOS C	1.0	7.7	0.81	0.95	40.9
Appro	ach	80	10.0	0.270	18.1	LOS C	1.0	7.7	0.76	0.90	41.7
West:	Bruxner H	lighway									
10	L2	102	10.0	0.059	5.7	LOS A	0.0	0.0	0.00	0.57	53.2
11	T1	424	9.0	0.230	0.0	LOS A	0.0	0.0	0.00	0.00	59.9
Appro	ach	526	9.2	0.230	1.1	NA	0.0	0.0	0.00	0.11	58.5
All Vel	nicles	1004	9.2	0.270	2.2	NA	1.0	7.7	0.07	0.15	56.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Processed: Tuesday, 8 May 2018 1:15:50 PM
Project: P:\P3477 2740 Bruxner Hway Casino Traffic Services\Technical Work\Models\SIDRA\P3477.001M Bruxner Cassino Existing.sip7

V Site: 1 [2029 DES PM - Existing]

Bruxner Highway / Cassino Drive Priority-Controlled Intersection 2029 Design Traffic PM Peak Hour Giveway / Yield (Two-Way)

Move	ment Per	rformance ·	- Vehicle	es							
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Fact: I	Bruxner Hi	veh/h	%	v/c	sec		veh	m		per veh	km/h
5	T1	392	9.0	0.213	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
6	R2	12	10.0	0.015	8.2	LOS A	0.1	0.4	0.49	0.64	48.1
Appro	ach	403	9.0	0.213	0.3	NA	0.1	0.4	0.01	0.02	59.5
North:	Cassino E	Orive									
7	L2	23	10.0	0.028	6.7	LOS A	0.1	0.7	0.43	0.62	48.1
9	R2	147	10.0	0.528	23.5	LOS C	2.6	19.8	0.85	1.08	39.2
Appro	ach	171	10.0	0.528	21.3	LOS C	2.6	19.8	0.80	1.02	40.2
West:	Bruxner H	ighway									
10	L2	88	10.0	0.051	5.7	LOS A	0.0	0.0	0.00	0.57	53.2
11	T1	388	9.0	0.211	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Appro	ach	477	9.2	0.211	1.1	NA	0.0	0.0	0.00	0.11	58.6
All Vel	hicles	1051	9.3	0.528	4.0	NA	2.6	19.8	0.13	0.22	54.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

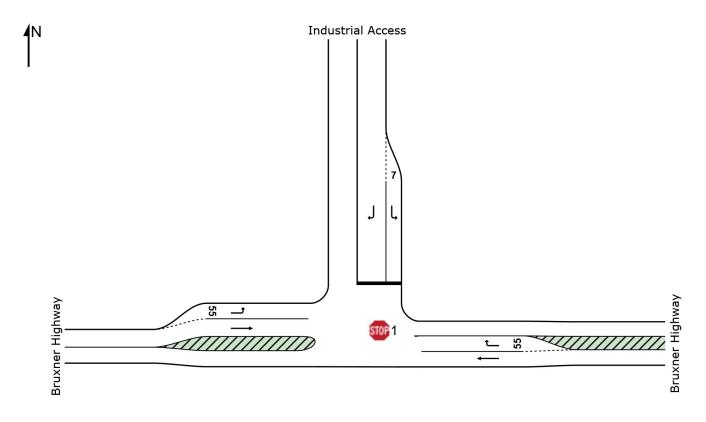
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: BITZIOS CONSULTING | Processed: Tuesday, 8 May 2018 1:16:28 PM
Project: P:\P3477 2740 Bruxner Hway Casino Traffic Services\Technical Work\Models\SIDRA\P3477.001M Bruxner Cassino Existing.sip7

SITE LAYOUT

site: 1 [2019 DES AM - Ind Access AUL CHR]

Bruxner Highway / Industrial Access Priority-Controlled Intersection 2019 Design Traffic AM Peak Hour Stop (Two-Way)

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Created: Friday, 11 May 2018 3:05:07 PM
Project: P:\P3477 2740 Bruxner Hway Casino Traffic Services\Technical Work\Models\SIDRA\P3477.001M Bruxner Ind Access AUL CHR.sip7

🥶 Site: 1 [2019 DES AM - Ind Access AUL CHR]

Bruxner Highway / Industrial Access Priority-Controlled Intersection 2019 Design Traffic AM Peak Hour Stop (Two-Way)

Move	ment Pe	rformance -	· Vehicle	es							
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
East: E	Bruxner H	ighway									
5	T1	367	9.0	0.197	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
6	R2	64	10.0	0.074	7.9	LOS A	0.3	2.2	0.47	0.66	48.7
Approa	ach	432	9.1	0.197	1.2	NA	0.3	2.2	0.07	0.10	58.0
North:	Industrial	Access									
7	L2	27	10.0	0.037	10.0	LOS A	0.1	1.0	0.42	0.90	46.8
9	R2	27	10.0	0.112	21.7	LOS C	0.4	2.9	0.77	1.00	41.3
Approa	ach	55	10.0	0.112	15.9	LOS C	0.4	2.9	0.60	0.95	43.9
West:	Bruxner H	lighway									
10	L2	65	10.0	0.037	5.7	LOS A	0.0	0.0	0.00	0.57	53.2
11	T1	338	9.0	0.177	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approa	ach	403	9.2	0.177	0.9	NA	0.0	0.0	0.00	0.09	58.8
All Veh	nicles	889	9.2	0.197	2.0	NA	0.4	2.9	0.07	0.15	57.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Processed: Wednesday, 9 May 2018 11:55:05 AM

Project: P:\P3477 2740 Bruxner Hway Casino Traffic Services\Technical Work\Models\SIDRA\P3477.001M Bruxner Ind Access AUL CHR.sip7

🥶 Site: 1 [2019 DES PM - Ind Access AUL CHR]

Bruxner Highway / Industrial Access Priority-Controlled Intersection 2019 Design Traffic PM Peak Hour Stop (Two-Way)

Move	ment Pe	rformance -	- Vehicle	es							
Mov ID	OD Mov	Demand Total	HV	Deg. Satn	Average Delay	Level of Service	95% Back (Vehicles	Distance	Prop. Queued	Effective Stop Rate	Average Speed
East: E	Bruxner H	veh/h ighway	%	v/c	sec		veh	m		per veh	km/h
5	T1	369	9.0	0.198	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
6	R2	37	10.0	0.042	7.7	LOS A	0.2	1.2	0.45	0.64	48.8
Approa	ach	406	9.1	0.198	0.7	NA	0.2	1.2	0.04	0.06	58.7
North:	Industrial	Access									
7	L2	73	10.0	0.099	10.3	LOS B	0.4	2.7	0.45	0.93	46.7
9	R2	85	10.0	0.332	24.2	LOS C	1.4	10.3	0.80	1.06	40.2
Approa	ach	158	10.0	0.332	17.8	LOS C	1.4	10.3	0.64	1.00	42.9
West:	Bruxner F	Highway									
10	L2	32	10.0	0.018	5.7	LOS A	0.0	0.0	0.00	0.57	53.2
11	T1	353	9.0	0.185	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approa	ach	384	9.1	0.185	0.5	NA	0.0	0.0	0.00	0.05	59.3
All Veh	nicles	948	9.2	0.332	3.5	NA	1.4	10.3	0.12	0.21	55.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Processed: Wednesday, 9 May 2018 11:55:26 AM

Project: P:\P3477 2740 Bruxner Hway Casino Traffic Services\Technical Work\Models\SIDRA\P3477.001M Bruxner Ind Access AUL CHR.sip7

🥶 Site: 1 [2029 DES AM - Ind Access AUL CHR]

Bruxner Highway / Industrial Access Priority-Controlled Intersection 2029 Design Traffic AM Peak Hour Stop (Two-Way)

Move	ment Pe	rformance -	· Vehicle	es							
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
East: E	Bruxner H	ighway									
5	T1	398	9.0	0.214	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
6	R2	64	10.0	0.078	8.1	LOS A	0.3	2.3	0.49	0.68	48.5
Approa	ach	462	9.1	0.214	1.2	NA	0.3	2.3	0.07	0.09	58.1
North:	Industrial	Access									
7	L2	27	10.0	0.038	10.3	LOS B	0.1	1.0	0.45	0.91	46.7
9	R2	27	10.0	0.128	24.1	LOS C	0.4	3.2	0.80	1.00	40.2
Approa	ach	55	10.0	0.128	17.2	LOS C	0.4	3.2	0.62	0.95	43.2
West:	Bruxner H	lighway									
10	L2	65	10.0	0.037	5.7	LOS A	0.0	0.0	0.00	0.57	53.2
11	T1	369	9.0	0.194	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approa	ach	435	9.2	0.194	0.9	NA	0.0	0.0	0.00	0.09	58.8
All Veh	nicles	952	9.2	0.214	1.9	NA	0.4	3.2	0.07	0.14	57.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Processed: Wednesday, 9 May 2018 11:55:35 AM

Project: P:\P3477 2740 Bruxner Hway Casino Traffic Services\Technical Work\Models\SIDRA\P3477.001M Bruxner Ind Access AUL CHR.sip7

🥶 Site: 1 [2029 DES PM - Ind Access AUL CHR]

Bruxner Highway / Industrial Access Priority-Controlled Intersection 2029 Design Traffic PM Peak Hour Stop (Two-Way)

Move	ment Pe	rformance ·	- Vehicle	es							
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back (Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
East: E	Bruxner H	ighway								· ·	
5	T1	403	9.0	0.217	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
6	R2	37	10.0	0.043	7.9	LOS A	0.2	1.2	0.47	0.65	48.7
Approa	ach	440	9.1	0.217	0.7	NA	0.2	1.2	0.04	0.05	58.8
North:	Industrial	Access									
7	L2	73	10.0	0.103	10.6	LOS B	0.4	2.8	0.47	0.94	46.5
9	R2	85	10.0	0.379	27.8	LOS D	1.6	11.8	0.84	1.08	38.7
Approa	ach	158	10.0	0.379	19.9	LOS C	1.6	11.8	0.67	1.02	41.9
West:	Bruxner H	lighway									
10	L2	32	10.0	0.018	5.7	LOS A	0.0	0.0	0.00	0.57	53.2
11	T1	381	9.0	0.200	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approa	ach	413	9.1	0.200	0.5	NA	0.0	0.0	0.00	0.04	59.4
All Veh	nicles	1011	9.2	0.379	3.6	NA	1.6	11.8	0.12	0.20	55.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

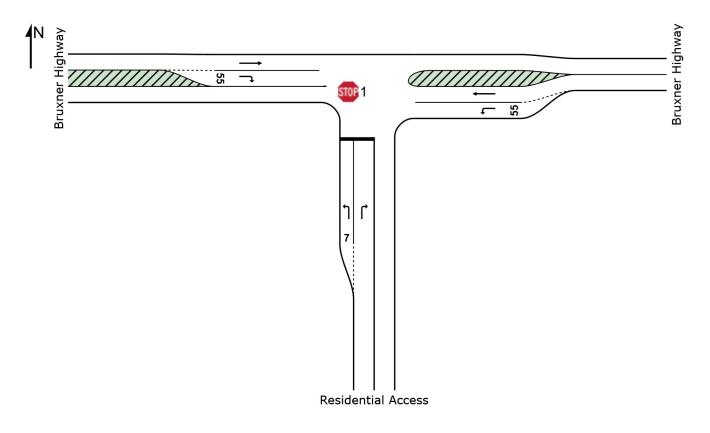
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: BITZIOS CONSULTING | Processed: Wednesday, 9 May 2018 11:55:44 AM

Project: P:\P3477 2740 Bruxner Hway Casino Traffic Services\Technical Work\Models\SIDRA\P3477.001M Bruxner Ind Access AUL CHR.sip7

SITE LAYOUT

Site: 1 [2019 DES AM - Res Access AUL CHR]

Bruxner Highway / Residential Access Priority-Controlled Intersection 2019 Design Traffic AM Peak Hour Stop (Two-Way)

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Created: Friday, 11 May 2018 3:06:51 PM

Project: P:\P3477 2740 Bruxner Hway Casino Traffic Services\Technical Work\Models\SIDRA\P3477.001M Bruxner Res Access AUL CHR.sip7

Site: 1 [2019 DES AM - Res Access AUL CHR]

Bruxner Highway / Residential Access Priority-Controlled Intersection 2019 Design Traffic AM Peak Hour Stop (Two-Way)

Movement Performance - Vehicles												
Mov	OD	Demand l		Deg.	Average	Level of	95% Back		Prop.	Effective	Average	
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed	
South	: Residentia	veh/h	%	v/c	sec		veh	m		per veh	km/h	
South												
1	L2	56	1.0	0.074	9.8	LOS A	0.3	1.8	0.45	0.92	47.0	
3	R2	57	1.0	0.192	18.9	LOS C	0.7	4.8	0.74	1.01	42.4	
Appro	Approach		1.0	0.192	14.4	LOS B	0.7	4.8	0.60	0.96	44.6	
East: I	Bruxner Hiç	ghway										
4	L2	24	1.0	0.013	5.6	LOS A	0.0	0.0	0.00	0.58	53.6	
5	T1	375	9.0	0.201	0.0	LOS A	0.0	0.0	0.00	0.00	60.0	
Appro	Approach		8.5	0.201	0.4	NA	0.0	0.0	0.00	0.03	59.5	
West:	Bruxner Hi	ighway										
11	T1	341	9.0	0.183	0.0	LOS A	0.0	0.0	0.00	0.00	60.0	
12	R2	24	1.0	0.026	7.4	LOS A	0.1	0.7	0.45	0.63	48.7	
Appro	ach	365	8.5	0.183	0.5	NA	0.1	0.7	0.03	0.04	59.1	
All Vehicles		877	7.5	0.201	2.2	NA	0.7	4.8	0.09	0.16	56.9	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Processed: Wednesday, 9 May 2018 11:34:30 AM
Project: P:\P3477 2740 Bruxner Hway Casino Traffic Services\Technical Work\Models\SIDRA\P3477.001M Bruxner Res Access AUL CHR.sip7

Site: 1 [2019 DES PM - Res Access AUL CHR]

Bruxner Highway / Residential Access Priority-Controlled Intersection 2019 Design Traffic PM Peak Hour Stop (Two-Way)

Movement Performance - Vehicles												
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average	
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed	
0 41-	. D i - i + i	veh/h	%	v/c	sec		veh	m_		per veh	km/h	
South	: Residenti	al Access										
1	L2	28	1.0	0.038	9.8	LOS A	0.1	0.9	0.44	0.90	47.1	
3	R2	24	1.0	0.095	20.4	LOS C	0.3	2.2	0.76	1.00	41.7	
Appro	Approach		1.0	0.095	14.6	LOS B	0.3	2.2	0.59	0.94	44.4	
East: I	Bruxner Hi	ghway										
4	L2	67	1.0	0.036	5.6	LOS A	0.0	0.0	0.00	0.58	53.6	
5	T1	377	9.0	0.202	0.0	LOS A	0.0	0.0	0.00	0.00	60.0	
Appro	Approach		7.8	0.202	0.9	NA	0.0	0.0	0.00	0.09	58.9	
West:	Bruxner Hi	ighway										
11	T1	367	9.0	0.197	0.0	LOS A	0.0	0.0	0.00	0.00	60.0	
12	R2	58	1.0	0.066	7.8	LOS A	0.3	1.8	0.48	0.68	48.4	
Appro	ach	425	7.9	0.197	1.1	NA	0.3	1.8	0.07	0.09	58.1	
All Vehicles		922	7.5	0.202	1.7	NA	0.3	2.2	0.06	0.14	57.5	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Processed: Wednesday, 9 May 2018 11:34:46 AM
Project: P:\P3477 2740 Bruxner Hway Casino Traffic Services\Technical Work\Models\SIDRA\P3477.001M Bruxner Res Access AUL CHR.sip7

Site: 1 [2029 DES AM - Res Access AUL CHR]

Bruxner Highway / Residential Access Priority-Controlled Intersection 2029 Design Traffic AM Peak Hour Stop (Two-Way)

Movement Performance - Vehicles												
Mov ID	OD Mov	Demand I Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h	
South:	Resident	ial Access	70	•,•			7011			per veri	KITI/TT	
1	L2	56	1.0	0.077	10.1	LOS B	0.3	1.9	0.47	0.93	46.9	
3	R2	57	1.0	0.217	21.2	LOS C	0.8	5.5	0.78	1.02	41.3	
Approa	ach	113	1.0	0.217	15.7	LOS C	0.8	5.5	0.63	0.97	43.9	
East: E	Bruxner H	ighway										
4	L2	24	1.0	0.013	5.6	LOS A	0.0	0.0	0.00	0.58	53.6	
5	T1	405	9.0	0.218	0.0	LOS A	0.0	0.0	0.00	0.00	60.0	
Approa	Approach		8.5	0.218	0.3	NA	0.0	0.0	0.00	0.03	59.6	
West:	Bruxner H	lighway										
11	T1	373	9.0	0.200	0.0	LOS A	0.0	0.0	0.00	0.00	60.0	
12	R2	24	1.0	0.027	7.6	LOS A	0.1	0.7	0.46	0.64	48.5	
Approa	ach	397	8.5	0.200	0.5	NA	0.1	0.7	0.03	0.04	59.1	
All Vehicles		939	7.6	0.218	2.2	NA	0.8	5.5	0.09	0.15	56.9	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Processed: Wednesday, 9 May 2018 11:35:13 AM

Project: P:\P3477 2740 Bruxner Hway Casino Traffic Services\Technical Work\Models\SIDRA\P3477.001M Bruxner Res Access AUL CHR.sip7

Site: 1 [2029 DES PM - Res Access AUL CHR]

Bruxner Highway / Residential Access Priority-Controlled Intersection 2029 Design Traffic PM Peak Hour Stop (Two-Way)

Movement Performance - Vehicles												
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average	
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed	
Cauth	Danislassi	veh/h	%	v/c	sec		veh	m		per veh	km/h	
South	Residenti	ai Access										
1	L2	28	1.0	0.040	10.1	LOS B	0.1	1.0	0.46	0.90	46.9	
3	R2	24	1.0	0.108	22.5	LOS C	0.4	2.5	0.79	1.00	40.7	
Appro	Approach		1.0	0.108	15.8	LOS C	0.4	2.5	0.61	0.95	43.8	
East: I	Bruxner Hi	ghway										
4	L2	67	1.0	0.036	5.6	LOS A	0.0	0.0	0.00	0.58	53.6	
5	T1	411	9.0	0.221	0.0	LOS A	0.0	0.0	0.00	0.00	60.0	
Appro	Approach		7.9	0.221	0.8	NA	0.0	0.0	0.00	0.08	59.0	
West:	Bruxner Hi	ighway										
11	T1	396	9.0	0.213	0.0	LOS A	0.0	0.0	0.00	0.00	60.0	
12	R2	58	1.0	0.069	8.0	LOS A	0.3	1.8	0.50	0.70	48.3	
Appro	ach	454	8.0	0.213	1.0	NA	0.3	1.8	0.06	0.09	58.2	
All Vehicles		984	7.6	0.221	1.7	NA	0.4	2.5	0.06	0.13	57.5	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Processed: Wednesday, 9 May 2018 11:35:28 AM

Project: P:\P3477 2740 Bruxner Hway Casino Traffic Services\Technical Work\Models\SIDRA\P3477.001M Bruxner Res Access AUL CHR.sip7